ja6b07585_si_001.pdf (4.13 MB)

Total Synthesis of (−)-Spinosyn A via Carbonylative Macrolactonization

Download (4.13 MB)
journal contribution
posted on 10.08.2016, 00:00 by Yu Bai, Xingyu Shen, Yong Li, Mingji Dai
Spinosyn A (1), a complex natural product featuring a unique 5,6,5,12-fused tetracyclic core structure, is the major component of spinosad, an organic insecticide and an FDA-approved agent used worldwide. Herein, we report an efficient total synthesis of (−)-spinosyn A with 15 steps in the longest linear sequence and 23 steps total from readily available compounds 14 and 23. The synthetic approach features several important catalytic transformations including a chiral amine-catalyzed intramolecular Diels–Alder reaction to afford 22 in excellent diastereoselectivity, a one-step gold-catalyzed propargylic acetate rearrangement to convert 28 to α-iodoenone 31, an unprecedented palladium-catalyzed carbonylative Heck macrolactonization to form the 5,12-fused macrolactone in one step, and a gold-catalyzed Yu glycosylation to install the challenging β-forosamine. This total synthesis is highly convergent and modular, thus offering opportunities to synthesize spinosyn analogues in order to address the emerging cross-resistance problems.