American Chemical Society
Browse

Ti3C2Tx/PEDOT:PSS Composite Interface Enables over 17% Efficiency Non-fullerene Organic Solar Cells

Download (930.84 kB)
journal contribution
posted on 2021-09-15, 15:03 authored by Jie Wang, Ruixiang Peng, Jing Gao, Dandan Li, Lin Xie, Wei Song, Xiaoli Zhang, Yaqin Fu, Ziyi Ge
Metal carbide Ti3C2Tx as a new two-dimensional material with excellent metallic conductivity, good water solubility, and superior transmittance in the visible light range shows great potential for applications in optoelectronic devices. Herein, Ti3C2Tx/PEDOT:PSS composite films were fabricated by a simple solution process and employed as an anode interfacial layer in organic solar cells. By introducing the Ti3C2Tx/PEDOT:PSS composite interface into the devices, the highest power conversion efficiency (PCE) of 17.26% was achieved while using PM6:Y6 as the active layer, with a high short-circuit current (Jsc) of 26.52 mA/cm2 and a fill factor of up to 0.76. The PCE is much higher than 15.89% for the pure PEDOT:PSS interfacial layer-based device without doping. The dramatically improved performance was attributed to the increased conductivity of the Ti3C2Tx/PEDOT:PSS composite interface and the increased charge extraction and collection efficiency of the devices. This work presents an effective method to prepare the Ti3C2Tx/PEDOT:PSS composite interface and high-performance organic solar cells.

History