bi101726d_si_001.pdf (2.38 MB)
Download file

Three Clusters of Conformational States in P450cam Reveal a Multistep Pathway for Closing of the Substrate Access Channel,

Download (2.38 MB)
journal contribution
posted on 08.02.2011, 00:00 by Young-Tae Lee, Edith C. Glazer, Richard F. Wilson, C. David Stout, David B. Goodin
Conformational changes in the substrate access channel have been observed for several forms of cytochrome P450, but the extent of conformational plasticity exhibited by a given isozyme has not been completely characterized. Here we present crystal structures of P450cam bound to a library of 12 active site probes containing a substrate analogue tethered to a variable linker. The structures provide a unique view of the range of protein conformations accessible during substrate binding. Principal component analysis of a total of 30 structures reveals three discrete clusters of conformations: closed (P450cam-C), intermediate (P450cam-I), and fully open (P450cam-O). Relative to P450cam-C, the P450cam-I state results predominantly from a retraction of helix F, while both helices F and G move in concert to reach the fully open P450cam-O state. Both P450cam-C and P450cam-I are well-defined states, while P450cam-O shows evidence of a somewhat broader distribution of conformations and includes the open form recently seen in the absence of substrate. The observed clustering of protein conformations over a wide range of ligand variants suggests a multistep closure of the enzyme around the substrate that begins by conformational selection from an ensemble of open conformations and proceeds through a well-defined intermediate, P450cam-I, before full closure to the P450cam-C state in the presence of small substrates. This multistep pathway may have significant implications for a full understanding of substrate specificity, kinetics, and coupling of substrate binding to P450 function.