American Chemical Society
ja7b11283_si_001.pdf (6.63 MB)

Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange

Download (6.63 MB)
journal contribution
posted on 2017-11-28, 00:00 authored by Zonglong Li, Hui Li, Xinyu Guan, Junjie Tang, Yusran Yusran, Zhan Li, Ming Xue, Qianrong Fang, Yushan Yan, Valentin Valtchev, Shilun Qiu
Covalent organic frameworks (COFs) have emerged as functional materials for various potential applications. However, the availability of three-dimensional (3D) COFs is still limited, and nearly all of them exhibit neutral porous skeletons. Here we report a general strategy to design porous positively charged 3D ionic COFs by incorporation of cationic monomers in the framework. The obtained 3D COFs are built of 3-fold interpenetrated diamond net and show impressive surface area and CO2 uptakes. The ion-exchange ability of 3D ionic COFs has been highlighted by reversible removal of nuclear waste model ions and excellent size-selective capture for anionic pollutants. This research thereby provides a new perspective to explore 3D COFs as a versatile type of ion-exchange materials.