cb5b00731_si_001.pdf (2.73 MB)
Download file

Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue

Download (2.73 MB)
journal contribution
posted on 02.12.2015, 00:00 by Feifei Zhang, Chaoxuan Li, Wendy L. Kelly
The thiopeptides are a family of ribosomally synthesized and post-translationally modified peptide metabolites, and the vast majority of thiopeptides characterized to date possess one highly modified macrocycle. A few members, including thiostrepton A, harbor a second macrocycle that incorporates a quinaldic acid moiety and the four N-terminal residues of the peptide. The antibacterial properties of thiostrepton A are well established, and its recently discovered ability to inhibit the proteasome has additional implications for the development of antimalarial and anticancer therapeutics. We have conducted the saturation mutagenesis of Ala2 in the precursor peptide, TsrA, to examine which variants can be transformed into a mature thiostrepton analogue. Although the thiostrepton biosynthetic system is somewhat restrictive toward substitutions at the second residue, eight thiostrepton Ala2 analogues were isolated. The TsrA Ala2Ile and Ala2Val variants were largely channeled through an alternate processing pathway wherein the first residue of the core peptide, Ile1, is removed, and the resulting thiostrepton analogues bear quinaldic acid macrocycles abridged by one residue. This is the first report revealing that quinaldic acid loop size is amenable to alteration during the course of thiostrepton biosynthesis. Both the antibacterial and proteasome inhibitory properties of the thiostrepton Ala2 analogues were examined. While the identity of the residue at the second position of the core peptide influences thiostrepton biosynthesis, our report suggests it may not be crucial for antibacterial and proteasome inhibitory properties of the full-length variants. In contrast, the contracted quinaldic acid loop can, to differing degrees, affect both types of biological activity.