American Chemical Society
Browse
- No file added yet -

Thermosensitivity through Exchange Coupling in Ferrimagnetic/Antiferromagnetic Nano-Objects for Magnetic-Based Thermometry

Download (871.27 kB)
journal contribution
posted on 2023-03-06, 14:33 authored by Frank M. Abel, Eduardo L. Correa, Adam J. Biacchi, Thinh Q. Bui, Solomon I. Woods, Angela R. Hight Walker, Cindi L. Dennis
Temperature is a fundamental physical quantity important to the physical and biological sciences. Measurement of temperature within an optically inaccessible three-dimensional (3D) volume at microscale resolution is currently limited. Thermal magnetic particle imaging (T-MPI), a temperature variant of magnetic particle imaging (MPI), hopes to solve this deficiency. For this thermometry technique, magnetic nano-objects (MNOs) with strong temperature-dependent magnetization (thermosensitivity) around the temperature of interest are required; here, we focus between 200 K and 310 K. We demonstrate that thermosensitivity can be amplified in MNOs consisting of ferrimagnetic (FiM) iron oxide (ferrite) and antiferromagnetic (AFM) cobalt oxide (CoO) through interface effects. The FiM/AFM MNOs are characterized by X-ray diffraction (XRD), (scanning) transmission electron microscopy (STEM/TEM), dynamic light scattering (DLS), and Raman spectroscopy. Thermosensitivity is evaluated and quantified by temperature-dependent magnetic measurements. The FiM/AFM exchange coupling is confirmed by field-cooled (FC) hysteresis loops measured at 100 K. Magnetic particle spectroscopy (MPS) measurements were performed at room temperature to evaluate the MNOs MPI response. This initial study shows that FiM/AFM interfacial magnetic coupling is a viable method to increase thermosensitivity in MNOs for T-MPI.

History