ae1c03836_si_001.pdf (360.43 kB)
Download fileThermomechanically Robust Ceramic/Polymer Nanocomposites Modified with Ionic Liquid for Hybrid Polymer Electrolyte Applications
journal contribution
posted on 29.03.2022, 19:05 by Antonio del Bosque, Bianca K. Muñoz, María Sánchez, Alejandro UreñaThe development of hybrid electrolytes
(HEs) that allows high mechanical
properties and high ionic conductivity is a key in the smart mobility
progress. In this article, various solid polymer electrolytes (SPEs)
based on a blend of epoxy resins, ionic liquid, and titania or alumina
nanoparticles have been manufactured and their electrochemical and
thermomechanical performances have been evaluated. The combination
of SPE components providing the highest properties was studied, having
a significant influence on the type of nanoparticles and their dispersion.
The electrolyte with the best combination of properties was L65P35(ILE)Al2,
which showed Tg = 83 °C and E′ at 30 °C = 1.2 GPa as thermomechanical properties,
and σ0 = 7 × 10–4 S/cm, σ1 = 1.6 × 10–6 S/cm, and Csp = 5.6 × 10–5 F/g at room temperature, as electrochemical properties. Moreover,
the optimized electrolyte followed the Arrhenius ion transport model
(Ea = 24.7 kJ/mol). These results would
be promising for use as hybrid electrolyte in structural applications.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
thermomechanically robust ceramicspe components providingsmart mobility progresspolymer nanocomposites modified6 × 1083 ° c30 ° chigh ionic conductivity7 × 10sp </ suboptimized electrolyte followed0 </ subg </ sub1 </ subc </</ sub>< subionic liquid7 kjσ </e </thermomechanical performancesstructural applicationssignificant influenceroom temperatureresults wouldmol ).hybrid electrolyteshybrid electrolyteepoxy resins2 gpa