ie6b02509_si_001.pdf (180.54 kB)
Download fileThermally Assisted Dissociation of Methane Hydrates and the Impact of CO2 Injection
journal contribution
posted on 2016-09-12, 00:00 authored by Swanand
S. Tupsakhare, Garrett C. Fitzgerald, Marco J. CastaldiThe largest amount
of methane gas is trapped in less-conventional
natural gas resources, such as methane hydrates. It is estimated that
these reserves of methane gas, in the form of hydrates, are larger
than all of the conventional resources of methane gas combined. [U.S. Energy Information Administration (EIA), Independent
Statistics and Analysis, Potential of Gas Hydrates Is Great,
but Practical Development Is Far off, http://www.eia.gov/todayinenergy/detail.cfm?id=8690]. Methane extraction
from hydrates can be coupled with carbon dioxide sequestration to
make this process carbon-neutral. A large-scale laboratory reactor
is used to simulate the conditions existing in permafrost hydrate
sediments to study the hydrate formation and dissociation processes.
The dissociation process occurs via a cartridge heat source (to simulate
the down-hole combustion) and carbon dioxide injection, to study the
CO2 sequestration behavior. The hydrate sediment studied
was formed with 50% saturation of hydrate by pore volume and the dissociation
of this sediment was done using different combinations of high and
low heating rates (100 W and 20 W) and high and low CO2 injection rates (1000 and 155 mL/min). Two baseline
tests were conducted without any addition of heat at CO2 injection rates of 155 and 1000 mL/min, for comparison. The results
indicate that, at a constant heating rate, the number of moles of
methane recovered decreases with an increasing flow rate of CO2 injection, whereas the number of moles of CO2 sequestered
increases as the CO2 injection flow rate increases. At
50% initial hydrate saturation (SH) and
a heating rate of 100 W, the number of moles of methane recovered
decreased from 96 to 58 when the CO2 injection rate was
increased from 155 mL/min to 1000 mL/min, respectively. Whereas, at
50% initial saturation and a heating rate of 100 W, the number of
moles of CO2 sequestered increased from 13 to 40 when the
CO2 injection rates were increased from 155 mL/min to 1000
mL/min. The recovery efficiency improved from 18% to 22% to 60% when
the heating rate was increased from 0 to 20 W to 100 W, respectively,
at 1000 mL/min CO2 injection.
History
Usage metrics
Keywords
CO 2 injection flow rate increasescarbon dioxide sequestrationCO 2 injectioncartridge heat sourceheating rateCO 2 InjectionCO 2 injection ratesmethane gaspermafrost hydrate sedimentsenergy Information AdministrationCO 2 sequestration behaviorCO 2 injection rate100 Wcarbon dioxide injectionCO 2mLEIAU.S20 WThermally Assisted Dissociation