am7b06936_si_001.pdf (1.84 MB)

Theranostic Prodrug Vesicles for Imaging Guided Codelivery of Camptothecin and siRNA in Synergetic Cancer Therapy

Download (1.84 MB)
journal contribution
posted on 28.06.2017, 00:00 by Hongzhong Chen, Huan Jia, Huijun Phoebe Tham, Qiuyu Qu, Pengyao Xing, Jin Zhao, Soo Zeng Fiona Phua, Gang Chen, Yanli Zhao
The construction of prodrugs has been a popular strategy to overcome the limitations of chemotherapeutic drugs. However, complicated synthesis procedures and laborious purification steps make the fabrication of amphiphilic prodrugs rather difficult. By harnessing the concept of host–guest interaction, we designed and prepared a supra-amphiphile consisting of a dendritic cyclodextrin host and an adamantane/naphthalimide-modified camptothecin guest through glutathione-responsive disulfide linkage. This host–guest complex could self-assemble in aqueous solution to give nanosized vesicles. When the disulfide bond in adamantane/naphthalimide-modified camptothecin was cleaved by glutathione, the fluorescence of the freed adamantane/naphthalimide unit showed a significant red shift with enhanced intensity. Such glutathione-responsive fluorescence change allows for intracellular imaging and simultaneous monitoring of drug release in real time. On account of abundant positively charged amine groups on the supramolecular vesicle surface, siRNA (siPlK1) could be efficiently loaded on the vesicle. The gel retardation and fluorescence experiments proved that the siPlK1 was successfully bonded to the supramolecular vesicle. The vesicle with dendritic cyclodextrin ring exhibited negligible cytotoxicity even at high concentrations, avoiding the shortcoming of cytotoxicity from commonly used gene vectors. In vitro studies demonstrated that the loaded siRNA was transported into cancer cells to improve cancer therapeutic efficacy. Thus, we developed a prodrug-based supramolecular amphiphile via the host–guest interaction with better therapeutic performance than free camptothecin. The assembled system was utilized as a drug/gene vector to achieve combinational gene therapy and chemotherapy with a synergistic effect, providing an alternative strategy to deliver both prodrug and therapeutic gene.

History

Exports