jp0676336_si_001.pdf (198.12 kB)
Download file

Theoretical Study of Structure, Vibrational Frequencies, and Electronic Spectra of Dibenzofuran and Its Polychlorinated Derivatives

Download (198.12 kB)
journal contribution
posted on 22.02.2007, 00:00 by Ivan Ljubić, Aleksandar Sabljić
Minimum structures and harmonic vibrational frequencies of dibenzofuran (DF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and octachlorodibenzofuran (OCDF) were calculated using the multiconfigurational complete active space self-consistent field (CASSCF) and density functional theory (DFT) methods. The electronic transitions in these compounds were studied via the single-state multireference second-order perturbation theory (CASPT2) based on the CASSCF(14,13) references, as well as the time-dependent DFT (TD-B3P86) employing the cc-pVDZ (CASSCF/CASPT2) and 6-31G(d,p) (TD-B3P86) basis sets. The B3P86 geometry and harmonic vibrational frequencies of ground state DF agree very well with the experimental data, and the CASSCF/CASPT2 excitation energies and oscillator strengths are accurate enough to provide a reliable assignment of the absorption bands in the 200−300 nm region. The close agreements with experiment for the parent DF give the present theoretical approaches a valuable credit in predicting the properties of the environmentally toxic polychlorinated congeners, which is all the more important considering the difficulties and hazards in obtaining the experimental data.

History