es5b03298_si_002.pdf (99.84 kB)

The sxt Gene and Paralytic Shellfish Poisoning Toxins as Markers for the Monitoring of Toxic Alexandrium Species Blooms

Download (99.84 kB)
journal contribution
posted on 15.12.2015, 00:00 by Antonella Penna, Federico Perini, Carmela Dell’Aversano, Samuela Capellacci, Luciana Tartaglione, Maria Grazia Giacobbe, Silvia Casabianca, Santiago Fraga, Patrizia Ciminiello, Michele Scardi
Paralytic shellfish poisoning (PSP) is a serious human illness caused by the ingestion of seafood contaminated with saxitoxin and its derivatives (STXs). These toxins are produced by some species of marine dinoflagellates within the genus Alexandrium. In the Mediterranean Sea, toxic Alexandrium spp. blooms, especially of A. minutum, are frequent and intense with negative impact to coastal ecosystem, aquaculture practices and other economic activities. We conducted a large scale study on the sxt gene and toxin distribution and content in toxic dinoflagellate A. minutum of the Mediterranean Sea using both quantitative PCR (qPCR) and HILIC-HRMS techniques. We developed a new qPCR assay for the estimation of the sxtA1 gene copy number in seawater samples during a bloom event in Syracuse Bay (Mediterranean Sea) with an analytical sensitivity of 2.0 × 10° sxtA1 gene copy number per reaction. The linear correlation between sxtA1 gene copy number and microalgal abundance and between the sxtA1 gene and STX content allowed us to rapidly determine the STX-producing cell concentrations of two Alexandrium species in environmental samples. In these samples, the amount of sxtA1 gene was in the range of 1.38 × 105 – 2.55 × 108 copies/L and the STX concentrations ranged from 41–201 nmol/L. This study described a potential PSP scenario in the Mediterranean Sea.