pr700853j_si_004.pdf (7.35 kB)
Download file

The Responses of Mitochondrial Proteome in Rat Liver to the Consumption of Moderate Ethanol: The Possible Roles of Aldo-Keto Reductases

Download (7.35 kB)
journal contribution
posted on 2008-08-01, 00:00 authored by Liang Shi, Yuan Wang, Shuyang Tu, Xiaolei Li, Maomao Sun, Sanjay Srivastava, Ningzhi Xu, Aruni Bhatnagar, Siqi Liu
A large body of evidence supports the view that mitochondria are a primary target of alcohol stress. Changes in mitochondrial proteins due to moderate ethanol intake, however, have not been broadly and accurately estimated. For this study, rats were fed low doses of ethanol and the mitochondria were isolated from heart, kidney, and liver, using ultracentrifugation with Nycodenz density gradient. The mitochondrial proteins were well resolved upon two-dimensional electrophoresis (2DE), and the alcohol-responsive 2DE spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Compared with the control group, the proteins extracted from liver mitochondria of ethanol-fed rats exhibited the significant changes on 2DE images, whereas the 2DE images obtained from the kidney and the heart mitochondria remained almost unchanged by ethanol feeding. Significantly, over 50% of the alcohol-responsive proteins in liver mitochondria were members of aldo-keto reductase family (AKR), which were usually present in cytoplasm. The organelle distributions of AKR proteins in liver mitochondria were further confirmed by Western blot analysis as well as by confocal microscopy. In addition, translocations of AKR were examined in the CHANG cell line, which was cultured with and without ethanol. The results of Western blot strongly suggested that the abundances of AKR proteins in the mitochondria were greatly reduced by the presence of ethanol in culture medium. The results of this study show that, even with moderate ethanol feeding, the mitochondrial proteome in rat liver was more sensitive to alcohol stress than that of either the kidney or the heart. The translocation of AKR proteins may be involved in the detoxification of liver cells.