posted on 2015-12-17, 00:34authored byHirotoshi Matsumura, Takahiro Hayashi, Saumen Chakraborty, Yi Lu, Pierre Moënne-Loccoz
Denitrifying NO reductases are transmembrane
protein complexes
that are evolutionarily related to heme/copper terminal oxidases.
They utilize a heme/nonheme diiron center to reduce two NO molecules
to N2O. Engineering a nonheme FeB site within
the heme distal pocket of sperm whale myoglobin has offered well-defined
diiron clusters for the investigation of the mechanism of NO reduction
in these unique active sites. In this study, we use FTIR spectroscopy
to monitor the production of N2O in solution and to show
that the presence of a distal FeBII is not sufficient
to produce the expected product. However, the addition of a glutamate
side chain peripheral to the diiron site allows for 50% of a productive
single-turnover reaction. Unproductive reactions are characterized
by resonance Raman spectroscopy as dinitrosyl complexes, where one
NO molecule is bound to the heme iron to form a five-coordinate low-spin
{FeNO}7 species with ν(FeNO)heme and ν(NO)heme at 522 and 1660 cm–1, and a second NO
molecule is bound to the nonheme FeB site with a ν(NO)FeB at 1755 cm–1. Stopped-flow UV–vis
absorption coupled with rapid-freeze-quench resonance Raman spectroscopy
provide a detailed map of the reaction coordinates leading to the
unproductive iron-nitrosyl dimer. Unexpectedly, NO binding to FeB is kinetically favored and occurs prior to the binding of
a second NO to the heme iron, leading to a (six-coordinate low-spin
heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl complex
with characteristic ν(FeNO)heme at 570 ± 2 cm–1 and ν(NO)FeB at 1755 cm–1. Without the addition of a peripheral glutamate, the dinitrosyl
complex is converted to a dead-end product after the dissociation
of the proximal histidine of the heme iron, but the added peripheral
glutamate side chain in FeBMb2 lowers the rate of dissociation
of the promixal histidine which in turn allows the (six-coordinate
low-spin heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl
complex to decay with production of N2O at a rate of 0.7
s–1 at 4 °C. Taken together, our results support
the proposed trans mechanism of NO reduction in NORs.