jp311073m_si_005.pdf (15.96 kB)
Download file

The Great Diversity of HMX Conformers: Probing the Potential Energy Surface Using CCSD(T)

Download (15.96 kB)
journal contribution
posted on 25.04.2013, 00:00 by Robert W. Molt, Thomas Watson, Alexandre P. Bazanté, Rodney J. Bartlett
The octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX) molecule is a very commonly studied system, in all 3 phases, because of its importance as an explosive; however, no one has ever attempted a systematic study of what all the major gas-phase conformers are. This is critical to a mechanistic study of the kinetics involved, as well as the viability of various crystalline polymorphs based on the gas-phase conformers. We have used existing knowledge of basic cyclooctane chemistry to survey all possible HMX conformers based on its fundamental ring structure. After studying what geometries are possible after second-order many-body perturbation theory (MBPT(2)) geometry optimization, we calculated the energetics using coupled cluster singles, doubles, and perturbative triples (CCSD­(T))/cc-pVTZ. These highly accurate energies allow us to better calculate starting points for future mechanistic studies. Additionally, the plethora of structures are compared to existing experimental data of crystals. It is found that the crystal field effect is sometimes large and sometimes small for HMX.