ja3c08358_si_001.pdf (3.29 MB)
Tetrachlorovancomycin: Total Synthesis of a Designed Glycopeptide Antibiotic of Reduced Synthetic Complexity
journal contribution
posted on 2023-09-18, 18:38 authored by Maxwell
J. Moore, Pengjin Qin, Naoto Yamasaki, Xianhuang Zeng, D. Jamin Keith, Sunna Jung, Takumi Fukazawa, Katherine Graham-O’Regan, Zhi-Chen Wu, Shreyosree Chatterjee, Dale L. BogerA technically straightforward total synthesis of a new
class of
vancomycin analogues of reduced synthetic complexity was developed
that provided tetrachlorovancomycin (1, LLS = 15 steps,
15% overall yield) and its precursor aglycon 29 (nearly
20% overall yield). The class retains all the intricate vancomycin
structural features that contribute to its target binding affinity
and selectivity, maintains the antimicrobial activity of vancomycin,
and achieves the simplification by an unusual addition, not removal,
of benign substituents to the core structure. The modification, accomplished
by addition of two aryl chloride substituents to provide 1, permitted a streamlined total synthesis of the new glycopeptide
antibiotic class by removing the challenges associated with CD and
DE ring system atropisomer stereochemical control. This also enabled
their simultaneous and further-activated SNAr macrocyclizations
that establish the tricyclic skeleton of 1. Key elements
of the approach include catalyst-controlled diastereoselective formation
of the AB biaryl axis of chirality (>30:1 dr), an essentially instantaneous
macrolactamization of the AB ring system free of competitive epimerization
(>30:1 dr), racemization free coupling of the E ring tetrapeptide,
room temperature simultaneous CD and DE ring system cyclizations,
a highly refined 4-step conversion of the cyclization product to the
aglycon, and a protecting-group-free one-pot enzymatic glycosylation
for disaccharide introduction. In addition to the antimicrobial evaluation
of tetrachlorovancomycin (1), the preparation of key
peripherally modified derivatives, which introduce independent and
synergistic mechanisms of action, revealed their exceptional antimicrobial
potency and provide the foundation for future use of this new class
of synthetic glycopeptide analogues.
History
Usage metrics
Categories
Keywords
target binding affinityreduced synthetic complexitypot enzymatic glycosylationhighly refined 4essentially instantaneous macrolactamizatione ring tetrapeptidedesigned glycopeptide antibioticcontrolled diastereoselective formationchirality (> 30approach include catalystab biaryl axis1 dr ),synthetic glycopeptide analoguesexceptional antimicrobial potency29 bstreamlined total synthesisoverall yield ).n subtetrachlorovancomycin (< btotal synthesisoverall yieldantimicrobial evaluationantimicrobial activityvancomycin analoguestricyclic skeletonsynergistic mechanismsstep conversionnew classnearly 20key elementsintroduce independentfuture usefree onedisaccharide introductioncyclization productcore structureclass retainschallenges associatedbenign substituentsar macrocyclizationsalso enabled