American Chemical Society
Browse
bc0c00348_si_001.pdf (2.26 MB)

Systematic Screening and Deep Analysis of CoPt Binding Peptides Leads to Enhanced CoPt Nanoparticles Using Designed Peptides

Download (2.26 MB)
journal contribution
posted on 2020-08-03, 18:04 authored by Rosie M. Jarrald, Aw W. Liang Alvin, Andrea E. Rawlings, Masayoshi Tanaka, Mina Okochi, Sarah S. Staniland
Using protein and peptide additives to direct the crystallization of inorganic materials is a very attractive and environmentally friendly strategy to access complex and sometimes inaccessible mineral phases. CoPt is a very desirable high-magnetoanisotropic material in its L10 phase, but this is acquired by annealing at high temperatures which is incompatible with delicate nanomaterial assembly. Previous studies identified one peptide with high affinity to CoPt and four peptides with high affinity to FePt L10 phase nanoparticles (NPs) through phage display biopanning selection. While synthesis mediated by these peptides offered a small degree of L10 character to the NPs, they do not have the magnetoanistropy required for applications. In this study, we improve the activity of peptide directed crystallization by designing second generation peptides. We use the five literature sequences (LS) to probe the binding affinity deeper through dissection (alanine scanning), reduction (truncations), and substitution of the LS to find key amino acids and motifs. This is performed using a SPOT peptide array, importantly probing interactions at three stages of NP formation: with precursor, during synthesis, and with NPs. We found four universal features: 1) the importance of basic residues, particularly lysine flanking both ends of the sequence; 2) the importance of methionine; 3) shorter sequences show higher affinity than longer ones; and 4) acidic residues have a negative impact on binding with aspartic acid less favorable than glutamic acid. However, an acidic amino acid benefits, presumably to balance charge. The short motif KSLS had high affinity in all assays. Three sequences were selected from the screening, and three sequences were designed from the rules above. These were used to mediate a green synthesis of CoPt nanoparticles. The screened peptides mediated the formation of NPs with improved coercivity (90–110 Oe) compared to the LS (30–80 Oe), while the designed peptides facilitated formation of CoPt NPs with the highest coercivity (109 to 132 Oe), representing a massive improvement on L10 character. This result along with deeper insight this methodology brings offers vast potential for the future.

History