am5b06610_si_001.pdf (1.67 MB)

Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells

Download (1.67 MB)
journal contribution
posted on 07.10.2015, 00:00 by Tiantian Wei, Xi Sun, Xin Li, Hans Ågren, Yongshu Xie
Cyanoacrylic and carboxyl groups have been developed as the most extensively used electron acceptor and anchoring group for the design of sensitizers for dye-sensitized solar cells. In terms of the photoelectric conversion efficiency, each of them has been demonstrated to be superior to the other one in certain cases. Herein, to further understand the effect of these two groups on cell efficiencies, a series of porphyrin sensitizers were designed and synthesized, with the acceptors systematically varied, and the effect of the neighboring ethynylene unit was also investigated. Compared with the sensitizer XW5 which contains a carboxyphenyl anchoring moiety directly linked to the meso-position of the porphyrin framework, the separate introduction of a strongly electron-withdrawing cyanoacrylic acid as the anchoring group or the insertion of an ethynylene unit can achieve broadened light absorption and IPCE response, resulting in higher Jsc and higher efficiency. Thus, compared with the efficiency of 4.77% for XW5, dyes XW1 and XW6 exhibit higher efficiencies of 7.09% and 5.92%, respectively. Simultaneous introduction of the cyanoacrylic acid and the ethynylene units into XW7 can further broaden light absorption and thus further improve the Jsc. However, XW7 exhibits the lowest Voc value, which is not only related to the floppy structure of the cyanoacrylic group but also related to the aggravated dye aggregation effect due to the extended framework. As a result, XW7 exhibits a relatively low efficiency of 5.75%. These results indicate that the combination of the ethynylene and cyanoacrylic groups is an unsuccessful approach. To address this problem, a cyano substituent was introduced to XW8 at the ortho position of the carboxyl group in the carboxyphenyl acceptor. Thus, XW8 exhibits the highest efficiency of 7.59% among these dyes. Further cosensitization of XW8 with XS3 dramatically improved the efficiency to 9.31%.