American Chemical Society
Browse
ja403041g_si_001.pdf (1.77 MB)

Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction

Download (1.77 MB)
journal contribution
posted on 2013-05-15, 00:00 authored by Huiyuan Zhu, Sen Zhang, Shaojun Guo, Dong Su, Shouheng Sun
To further enhance the catalytic activity and durability of nanocatalysts for the oxygen reduction reaction (ORR), we synthesized a new class of 20 nm × 2 nm ternary alloy FePtM (M = Cu, Ni) nanorods (NRs) with controlled compositions. Supported on carbon support and treated with acetic acid as well as electrochemical etching, these FePtM NRs were converted into core/shell FePtM/Pt NRs. These core/shell NRs, especially FePtCu/Pt NRs, exhibited much improved ORR activity and durability. The Fe10Pt75Cu15 NRs showed a mass current densities of 1.034 A/mgPt at 512 mV vs Ag/AgCl and 0.222 A/mgPt at 557 mV vs Ag/AgCl, which are much higher than those for a commercial Pt catalyst (0.138 and 0.035 A/mgPt, respectively). Our controlled synthesis provides a general approach to core/shell NRs with enhanced catalysis for the ORR or other chemical reactions.

History