American Chemical Society
Browse

Synthesis of Bisindole Alkaloids and Their Mode of Action against Methicillin-Resistant Staphylococcus Aureus

Download (8.71 MB)
journal contribution
posted on 2024-06-06, 08:03 authored by Emmanuel T. Adeniyi, Marco Kruppa, Stefania De Benedetti, Kevin C. Ludwig, Violetta Krisilia, Tobias R. Wassenberg, Melissa Both, Tanja Schneider, Thomas J. J. Müller, Rainer Kalscheuer
About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.

History