la302657x_si_001.pdf (634.47 kB)

Synthesis and Characterization of Novel Polyacid-Stabilized Latexes

Download (634.47 kB)
journal contribution
posted on 20.02.2016, 11:32 by Pengcheng Yang, S. P. Armes
A series of novel polyacid macromonomers based on 2-hydroxypropyl methacrylate (HPMA) were prepared by atom transfer radical polymerization (ATRP) via a two-step route. First, a range of well-defined PHPMA homopolymer precursors were synthesized by ATRP using a tertiary amine-functionalized initiator, 2-(dimethylamino)­ethyl-2-bromoisobutyrylamide, and a CuCl/2, 2′-bipyridine (bpy) catalyst in alcoholic media at 50 °C. ATRP polymerizations were relatively slow and poorly controlled in pure isopropanol (IPA), especially when targeting higher degrees of polymerization (DP > 30). Improved control was achieved by addition of water: low polydispersity (Mw/Mn < 1.25) PHPMA homopolymers of DP = 30, 40, 50, 60, or 70 were successfully prepared using a 9:1 w/w % IPA/water mixture at 50 °C. These PHPMA homopolymer precursors were then derivatized to produce the corresponding poly­(2-(succinyloxy)­propyl methacrylate) (PSPMA) macromonomers by quaternizing the tertiary amine end-group with excess 4-vinylbenzyl chloride, followed by esterification of the pendent hydroxyl groups using excess succinic anhydride at 20 °C. These polyacid macromonomers were evaluated as reactive steric stabilizers for polystyrene latex synthesis under either aqueous emulsion polymerization or alcoholic dispersion polymerization conditions. Near-monodisperse polystyrene latexes were obtained via aqueous emulsion polymerization using 10 wt % PSPMA macromonomer (with respect to styrene monomer) with various initiators as evidenced by scanning electron microscopy, disk centrifuge photosedimentometry and light scattering studies. PSPMA macromomer concentrations as low as 1.0 wt % also produced near-monodisperse latexes, suggesting that these PSPMA macromonomers are highly effective stabilizers. Alcoholic dispersion polymerization of styrene conducted in various ethanol/water mixtures with 10 wt % PSPMA50 macromonomer produced relatively large near-monodisperse latexes. Increasing the water content in such formulations led to smaller latexes, as expected. Control experiments conducted with 10 wt % PSPMA50 homopolymer produced relatively large polydisperse latexes via emulsion polymerization and only macroscopic precipitates via alcoholic dispersion polymerization. Thus the terminal styrene group on the macromonomer chains is essential for the formation of well-defined latexes. FT-IR spectroscopy indicated that these latexes contained PSPMA macromonomer, whereas 1H NMR spectroscopy studies of dissolved latexes allowed stabilizer contents to be determined. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies confirmed that the PSPMA macromonomer chains were located at the latex surface, as expected. Finally, these polyacid-stabilized polystyrene latexes exhibited excellent freeze–thaw stability and remained colloidally stable in the presence of electrolyte.