posted on 2019-09-03, 19:13authored byMikael Jumppanen, Sini M. Kinnunen, Mika J. Välimäki, Virpi Talman, Samuli Auno, Tanja Bruun, Gustav Boije af Gennäs, Henri Xhaard, Ingo B. Aumüller, Heikki Ruskoaho, Jari Yli-Kauhaluoma
Transcription factors GATA4 and NKX2-5
directly interact and synergistically
activate several cardiac genes and stretch-induced cardiomyocyte hypertrophy.
Previously, we identified phenylisoxazole carboxamide 1 as a hit compound, which inhibited the GATA4–NKX2-5 transcriptional
synergy. Here, the chemical space around the molecular structure of 1 was explored by synthesizing and characterizing 220 derivatives
and structurally related compounds. In addition to the synergistic
transcriptional activation, selected compounds were evaluated for
their effects on transcriptional activities of GATA4 and NKX2-5 individually
as well as potential cytotoxicity. The structure–activity relationship
(SAR) analysis revealed that the aromatic isoxazole substituent in
the southern part regulates the inhibition of GATA4–NKX2-5
transcriptional synergy. Moreover, inhibition of GATA4 transcriptional
activity correlated with the reduced cell viability. In summary, comprehensive
SAR analysis accompanied by data analysis successfully identified
potent and selective inhibitors of GATA4–NKX2-5 transcriptional
synergy and revealed structural features important for it.