American Chemical Society
Browse
- No file added yet -

Synthesis, Antimicrobial Evaluation, and Structure–Activity Relationship of α‑Pinene Derivatives

Download (2.1 MB)
journal contribution
posted on 2014-04-23, 00:00 authored by Preeti Dhar, PuiYee Chan, Daniel T. Cohen, Fadi Khawam, Sarah Gibbons, Teresa Snyder-Leiby, Ellen Dickstein, Prashant Kumar Rai, Geeta Watal
Several (+)- and (−)-α-pinene derivatives were synthesized and evaluated for their antimicrobial activity toward Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and the unicellular fungus Candida albicans using bioautographic assays. (+)-α-Pinene 1a showed modest activity against the test organisms, whereas (−)-α-pinene 1b showed no activity at the tested concentration. Of all the α-pinene derivatives evaluated, the β-lactam derivatives (10a and 10b) were the most antimicrobial. The increase in the antimicrobial activity of 10a compared to 1a ranged from nearly 3.5-fold (C. albicans) to 43-fold (S. aureus). The mean ± standard deviation for the zone of inhibition (mm) for 10a (C. albicans) was 31.9 ± 4.3 and that for S. aureus was 51.1 ± 2.9. Although (−)-α-pinene 1b was not active toward the test microorganisms, the corresponding β-lactam 10b, amino ester 13b, and amino alcohol 14b showed antimicrobial activity toward the test microorganisms. The increase in the antimicrobial activity of 10b compared to 1b ranged from 32-fold (S. aureus) to 73-fold (M. luteus). The mean ± standard deviation for the zone of inhibition (mm) for 10b (S. aureus) was 32.0 ± 0.60 and that for M. luteus was 73.2 ± 0.30.

History