American Chemical Society
Browse

Sustained-Release Method for the Directed Synthesis of ZIF-Derived Ultrafine Co-N‑C ORR Catalysts with Embedded Co Quantum Dots

Download (2.89 MB)
journal contribution
posted on 2020-12-18, 10:13 authored by Han Ye, Liangjun Li, Dandan Liu, Qiuju Fu, Fuzhao Zhang, Pengcheng Dai, Xin Gu, Xuebo Zhao
M-N-C catalysts with optimized local and external structures offer great potential for replacing expensive and labile Pt-based catalysts for the oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile strategy of synthesizing ultrafine ZIF-derived Co-N-C catalysts by precisely controlling the crystallization rate of ZIFs. The employment of meta-soluble Co-doped basic zinc acetate (Co-BZA), which shows a sustained-release effect in solvents, allows for the control of the solubility of Co-BZA in solvents. Detailed investigations suggest that the solubility of Co-BZA in the solvent is the key for governing the grain size of the resulting Zn/Co bimetallic ZIFs. Therefore, the self-assembly process between ligands and metal ions can be regulated by tuning the composition of mixed solvents, thus enabling rational tuning of the grain size of the resulting ZIFs. One-step pyrolysis of the ultrafine Zn/Co bimetallic ZIF precursor leads to Co and N co-doped carbon with an ultrafine grain size (termed UF Co-N-C). The Co centers that are uniformly distributed in the carbon matrix possess a quantum-dot-level grain size. Furthermore, this type of carbon nanohybrid exhibits a hierarchical pore structure, as well as a high surface area. When used as an ORR catalyst, the UF Co-N-C catalyst possesses high ORR activity (with an E1/2 of 0.9 V) that can rival 20 wt % commercial Pt/C (with an E1/2 of 0.835 V) in alkaline media. Notably, this catalyst also displays strong ORR performance similar to that of Pt/C in acidic media. The superior durability and methanol tolerance in both alkaline and acidic media for UF Co-N-C compared to Pt/C illustrate its great potential in replacing commercial Pt/C catalysts. The outstanding ORR performance of UF Co-N-C could be attributed to the simultaneous optimization of both external structures and active sites, demonstrating the effectiveness of this strategy in constructing ORR catalysts with controlled structures and desired functionalities.

History