American Chemical Society
Browse
am0c09073_si_001.pdf (583.81 kB)

Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) via Dopamine-Assisted Consecutive Immersion Coating

Download (583.81 kB)
journal contribution
posted on 2020-09-02, 02:13 authored by Peter Matthew Paul T. Fowler, Gian Vincent Dizon, Lemmuel L. Tayo, Alvin R. Caparanga, James Huang, Jie Zheng, Pierre Aimar, Yung Chang
Expanded polytetrafluoroethylene (ePTFE) is one of the materials widely used in the biomedical field, yet its application is being limited by adverse reactions such as thrombosis when it comes in contact with blood. Thus, a simple and robust way to modify ePTFE to be biologically inert is sought after. Modification of ePTFE without high-energy pretreatment, such as immersion coating, has been of interest to researchers for its straightforward process and ease in scaling up. In this study, we utilized a two-step immersion coating to zwitterionize ePTFE membranes. The first coating consists of the co-deposition of polyethylenimine (PEI) and polydopamine (PDA) to produce amine groups in the surface of the ePTFE for further functionalization. These amine groups from PEI will be coupled with the epoxide group of the zwitterionic copolymer, poly­(GMA-co-SBMA) (PGS), via a ring-opening reaction in the second coating. The coated ePTFE membranes were physically and chemically characterized to ensure that each step of the coating is successful. The membranes were also tested for their thrombogenicity via quantification of the blood cells attached to it during contact with biological solutions. The coated membranes exhibited around 90% reduction in attachment with respect to the uncoated ePTFE for both Gram-positive and Gram-negative strains of bacteria (Staphylococcus aureus and Escherichia coli). The coating was also able to resist blood cell attachment from human whole blood by 81.57% and resist red blood cell attachment from red blood cell concentrate by 93.4%. These ePTFE membranes, which are coated by a simple immersion coating, show significant enhancement of the biocompatibility of the membranes, which shows promise for future use in biological devices.

History