bi034551o_si_001.pdf (218.5 kB)

Surface Salt Bridges Modulate DNA Wrapping by the Type II DNA-Binding Protein TF1

Download (218.5 kB)
journal contribution
posted on 28.06.2003, 00:00 by Anne Grove
The histone-like protein HU is involved in compaction of the bacterial genome. Up to 37 bp of DNA may be wrapped about some HU homologues in a process that has been proposed to depend on a linked disruption of surface salt bridges that liberates cationic side chains for interaction with the DNA. Despite significant sequence conservation between HU homologues, binding sites from 9 to 37 bp have been reported. TF1, an HU homologue that is encoded by Bacillus subtilis bacteriophage SPO1, has nM affinity for 37 bp preferred sites in DNA with 5-hydroxymethyluracil (hmU) in place of thymine. On the basis of electrophoretic mobility shift assays, we show that TF1−DNA complex formation is associated with a net release of only ∼0.5 cations. The structure of TF1 suggests that Asp13 can form a dehydrated surface salt bridge with Lys23; substitution of Asp13 with Ala increases the net release of cations to ∼1. These data are consistent with complex formation linked to disruption of surface salt bridges. Substitution of Glu90 with Ala, which would expose Lys87 predicted to contact DNA immediately distal to a proline-mediated DNA kink, causes an increase in affinity and an abrogation of the preference for hmU-containing DNA. We propose that hmU preference is due to finely tuned interactions at the sites of kinking that expose a differential flexibility of hmU- and T-containing DNA. Our data further suggest that the difference in binding site size for HU homologues is based on a differential ability to stabilize the DNA kinks.