American Chemical Society
Browse
am0c06037_si_001.pdf (347.89 kB)

Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control

Download (347.89 kB)
journal contribution
posted on 2020-08-06, 22:20 authored by Rashid Khan, Han Wang, Yufang Li, Shuyan Yu, M. Kamran Khan, Kang Xiao, Xia Huang
We report a new robust and green facile platform for nonoxidizing chemical grafting to simultaneously improve antifouling and antibacterial properties of thin film composite (TFC) polyamide (PA) reverse osmosis (RO) membranes. In this work, alginate dialdehyde (ADA) was used as a green platform to graft chlorhexidine (CH), a nonoxidizing chemical, on TFC-RO membrane surface. A synergistic effect due to ADA and CH grafting was revealed. The modified membrane surfaces were characterized using XPS, FT-IR, AFM, SEM-EDS, contact angle, and zeta potential analysis. A simple two-step Schiff base reaction was performed. Improved salt rejection performances were observed for the grafted PA membranes at the expense of negligible flux drop for the CH-ADA-PA membranes (38 to 42 L m–2 h–1) compared with the pristine PA membrane (45 L m–2 h–1). All the CH-ADA-PA membranes had excellent antibacterial activity against E. coli along with a highly superior resistance to the formation of biofilms. Organic fouling behaviors with a protein (bovine serum albumin, BSA) and a surfactant (dodecyl trimethylammonium bromide, DTAB) were investigated as typical foulants for the grafted PA membranes. The results indicated that the CH-ADA-PA membranes showed the best antifouling performance followed by the ADA-PA membranes, the pristine membrane being the most inferior. Hence, these results pave the way for a new robust and green bioinspired route for practical application in RO membrane fouling control.

History