posted on 2006-02-28, 00:00authored byPeter Åsberg, K. Peter R. Nilsson, Olle Inganäs
A novel patterning method for anchoring biomolecules and noncovalent assembled conjugated polyelectrolyte
(CPE)/biomolecule complexes to a chip surface is presented. The surface energy of a hydrophilic substrate is modified
using an elastomeric poly(dimethylsiloxane) (PDMS) stamp, containing a relief pattern. Modification takes place on
the parts where the PDMS stamp is in conformal contact with the substrate and leaves low molecular weight PDMS
residues on the surface resulting in a hydrophobic modification, and then biomolecules and CPE/biomolecule complexes
are then adsorbed in a specific pattern. The method constitutes a discrimination system for different conformations
in biomolecules using CPEs as reporters and the PDMS modified substrates as the discriminator. Detection of different
conformations in two biomacromolecules, a synthetic peptide (JR2E) and a protein (calmodulin), reported by the CPE
and resolved by fluorescence was demonstrated. Also, excellent enzyme activity in patterned CPE/horseradish peroxidase
(HRP) enzyme was shown, demonstrating that this method can be used to pattern biomolecules with their activity
retained. The method presented could be useful in various biochip applications, such as analyzing proteins and peptides
in large-scale production, in making metabolic chips, and for making multi-microarrays.