posted on 2018-05-23, 00:00authored byGina Greco, Matteo Agostini, Ilaria Tonazzini, Damiano Sallemi, Stefano Barone, Marco Cecchini
In
the last few decades, new types of cell cultures have been introduced
to provide better cell survival and development, with micro- and nanoenvironmental
physicochemical conditions aimed at mimicking those present in vivo.
However, despite the efforts made, the systems available to date are
often difficult to replicate and use. Here, an easy-to-use surface-acoustic-wave
(SAW)-based platform is presented for realizing dynamic cell cultures
that is compatible with standard optical microscopes, incubators,
and cell-culture dishes. The SAW chip is coupled to a standard Petri
dish via a polydimethylsiloxane (PDMS) disc and consists of a lithium
niobate (LN) substrate on which gold interdigital transducers (IDTs)
are patterned to generate the SAWs and induce acoustic streaming in
the dish. SAW excitation is verified and characterized by laser Doppler
vibrometry, and the fluid dynamics is studied by microparticle image
velocimetry (μPIV). Heating is measured by an infrared (IR)
thermal camera. We finally tested this device with the U-937 monocyte
cell line for viability and proliferation and cell-morphological analysis.
The data demonstrate that it is possible to induce significant fluid
recirculation within the Petri dish while maintaining negligible heating.
Remarkably, cell proliferation in this condition was enhanced by 36
± 12% with respect to those of standard static cultures. Finally,
we show that cell death does not increase and that cell morphology
is not altered in the presence of SAWs. This device is the first demonstration
that SAW-induced streaming can mechanically improve cell proliferation
and further supports the great versatility and biocompatibility of
the SAW technology for cell manipulation.