ma6b00003_si_001.pdf (1.12 MB)

Supramolecular Elastomers. Particulate β‑Sheet Nanocrystal-Reinforced Synthetic Elastic Networks

Download (1.12 MB)
journal contribution
posted on 16.03.2016, 19:43 by Joseph J. Scavuzzo, Xuesong Yan, Yihong Zhao, Jacob D. Scherger, Junyi Chen, Shuo Zhang, Hao Liu, Min Gao, Tao Li, Xiuying Zhao, Gary R. Hamed, Mark D. Foster, Li Jia
β-Sheet crystals in natural silks are particulate and less than 10 nm in size in all three dimensions. In synthetic supramolecular analogues of natural silks, β-sheet crystals have been found to be fibrous with the longest dimension exceeding 100 nm in the hydrogen-bonding direction. This work demonstrates that particulate β-sheet crystals can be achieved without the use of an elaborate amino acid sequence by simply grafting oligo­(β-alanine) segments as pendent side groups to a butyl rubber main chain. The size control in the hydrogen-bonding direction is attributable to an entropic force that opposes the driving force for the self-assembly. The nanocrystals, especially those of trimeric β-alanine segments, display a remarkable ability to simultaneously provide stiffness, extensibility, and strength to the synthetic elastic network and do so highly efficiently at a low volume fraction of the material. The herein studied butyl rubber-based thermoplastic elastomers containing no more than 3.6 vol % of β-sheet nanocrystals are stiffer, stronger, and more extensible than vulcanized butyl rubber reinforced by 20 vol % of carbon black and poly­(styrene-b-isobutylene-b-styrene) reinforced by >33 vol % of polystyrene domains. The high reinforcing efficacy of the β-sheet crystals is attributable to two phenomena associated with their small sizes: a stick–slip mechanism for energy dissipation and an auxiliary layer of polymer brush that contributes to increasing the modulus.