American Chemical Society
Browse

Suppression of Hyperglycemia and Hepatic Steatosis by Black-Soybean-Leaf Extract via Enhanced Adiponectin-Receptor Signaling and AMPK Activation

Download (562.02 kB)
journal contribution
posted on 2018-12-13, 00:00 authored by Hua Li, Un-Hee Kim, Jeong-Hyun Yoon, Hyeon-Seon Ji, Hye-Mi Park, Ho-Yong Park, Tae-Sook Jeong
Yellow-soybean-leaf extract includes kaempferol glycosides and pheophorbides that reduce obesity and plasma glucose levels. This study researched the molecular mechanisms underlying the glucose-lowering effect of the extract of black-soybean leaves (EBL), which mainly contains quercetin glycosides and isorhamnetin glycosides, in mice with high-fat-diet (HFD)-induced obesity and diabetes and in HepG2 cells. Twelve weeks of EBL supplementation decreased body weight and fasting glucose, glycated hemoglobin, insulin, triglyceride, and nonesterified fatty acid levels. Histological analyses manifested that EBL suppressed hepatic steatosis. Interestingly, EBL significantly improved plasma adiponectin levels and increased adiponectin-receptor-gene (AdipoR1 and AdipoR2) expression in the liver. EBL restored the effects of HFD on hepatic AMP-activated protein kinase (AMPK) and on the family of peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ), which are associated with fatty acid metabolism and are downstream of the adiponectin receptors. Hence, EBL effectively diminished hyperglycemia and hepatic steatosis through enhancing adiponectin-induced signaling and AMPK activation in the liver.

History