American Chemical Society
cs1c04903_si_001.pdf (1.74 MB)

Step-by-Step Mechanism Insights into the TiO2/Ce2S3 S‑Scheme Photocatalyst for Enhanced Aniline Production with Water as a Proton Source

Download (1.74 MB)
journal contribution
posted on 2021-12-14, 15:40 authored by Feiyan Xu, Kai Meng, Shuang Cao, Chenhui Jiang, Tao Chen, Jingsan Xu, Jiaguo Yu
Exploring heterostructured photocatalysts for the photocatalytic hydrogenation reaction with water as a proton source and investigating the corresponding intrinsic step-by-step mechanism are of great interest. Here, we develop an S-scheme heterojunction through theoretical design and carried out solvothermal growth of Ce2S3 nanoparticles (NPs) onto electrospun TiO2 nanofibers. The low-dimensional (0D/1D) heterostructure unveils enhanced photocatalytic activity for aniline production by nitrobenzene hydrogenation with water as a proton source. Density functional theory (DFT) calculations indicate the electrons transfer from Ce2S3 to TiO2 upon hybridization due to their Fermi level difference and creates an internal electric field at the interface, driving the separation of the photoexcited charge carriers, which is authenticated by in situ X-ray photoelectron spectroscopy along with femtosecond transient absorption spectroscopy. The step-by-step reaction mechanism of the photocatalytic nitrobenzene hydrogenation to yield aniline is revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy, associated with DFT computational prediction.