id9b00011_si_001.pdf (1.15 MB)
Download fileStable and Conserved G‑Quadruplexes in the Long Terminal Repeat Promoter of Retroviruses
journal contribution
posted on 2019-05-13, 00:00 authored by Emanuela Ruggiero, Martina Tassinari, Rosalba Perrone, Matteo Nadai, Sara N. RichterRetroviruses
infect almost all vertebrates, from humans to domestic and farm animals,
from primates to wild animals, where they cause severe diseases, including
immunodeficiencies, neurological disorders, and cancer. Nonhuman retroviruses
have also been recently associated with human diseases. To date, no
effective treatments are available; therefore, finding retrovirus-specific
therapeutic targets is becoming an impelling issue. G-Quadruplexes
are four-stranded nucleic acid structures that form in guanine-rich
regions. Highly conserved G-quadruplexes located in the long-terminal-repeat
(LTR) promoter of HIV-1 were shown to modulate the virus transcription
machinery; moreover, the astonishingly high degree of conservation
of G-quadruplex sequences in all primate lentiviruses corroborates
the idea that these noncanonical nucleic acid structures are crucial
elements in the lentiviral biology and thus have been selected for
during evolution. In this work, we aimed at investigating the presence
and conservation of G-quadruplexes in the Retroviridae family. Genomewide
bioinformatics analysis showed that, despite their documented high
genetic variability, most retroviruses contain highly conserved putative
G-quadruplex-forming sequences in their promoter regions. Biophysical
and biomolecular assays proved that these sequences actually fold
into G-quadruplexes in physiological concentrations of relevant cations
and that they are further stabilized by ligands. These results validate
the relevance of G-quadruplexes in retroviruses and endorse the employment
of G-quadruplex ligands as innovative antiretroviral drugs. This study
indicates new possible pathways in the management of retroviral infections
in humans and animal species. Moreover, it may shed light on the mechanism
and functions of retrovirus genomes and derived transposable elements
in the human genome.