posted on 2021-04-30, 08:13authored byAmit Kumar Mondal, Marco D. Preuss, Marcin L. Ślęczkowski, Tapan Kumar Das, Ghislaine Vantomme, E. W. Meijer, Ron Naaman
In past studies,
spin selective transport was observed in polymers
and supramolecular structures that are based on homochiral building
blocks possessing stereocenters. Here we address the question to what
extent chiral building blocks are required for observing the chiral
induced spin selectivity (CISS) effect. We demonstrate the CISS effect
in supramolecular polymers exclusively containing achiral monomers,
where the supramolecular chirality was induced by chiral solvents
that were removed from the fibers before measuring. Spin-selective
transport was observed for electrons transmitted perpendicular to
the fibers’ long axis. The spin polarization correlates with
the intensity of the CD spectra of the polymers, indicating that the
effect is nonlocal. It is found that the spin polarization increases
with the samples’ thickness and the thickness dependence is
the result of at least two mechanisms: the first is the CISS effect,
and the second reduces the spin polarization due to scattering. Temperature
dependence studies provide the first support for theoretical work
that suggested that phonons may contribute to the spin polarization.