ja7b06546_si_001.pdf (201.23 kB)
Spectroscopy and DFT Calculations of a Flavo-diiron Enzyme Implicate New Diiron Site Structures
journal contribution
posted on 2017-07-30, 00:00 authored by Andrew
C. Weitz, Nitai Giri, Jonathan D. Caranto, Donald M. Kurtz, Emile L. Bominaar, Michael P. HendrichFlavo-diiron
proteins (FDPs) are non-heme iron containing enzymes
that are widespread in anaerobic bacteria, archaea, and protozoa,
serving as the terminal components to dioxygen and nitric oxide reductive
scavenging pathways in these organisms. FDPs contain a dinuclear iron
active site similar to that in hemerythrin, ribonucleotide reductase,
and methane monooxygenase, all of which can bind NO and O2. However, only FDP competently turns over NO to N2O.
Here, EPR and Mössbauer spectroscopies allow electronic characterization
of the diferric and diferrous species of FDP. The exchange-coupling
constant J (Hex = JS1·S2) was found to
increase from +20 cm–1 to +32 cm–1 upon reduction of the diferric to the diferrous species, indicative
of (1) at least one hydroxo bridge between the iron ions for both
states and (2) a change to the diiron core structure upon reduction.
In comparison to characterized diiron proteins and synthetic complexes,
the experimental values were consistent with a dihydroxo bridged diferric
core, which loses one hydroxo bridge upon reduction. DFT calculations
of these structures gave values of J and Mössbauer
parameters in agreement with experiment. Although the crystal structure
shows a hydrogen bond between the iron bound aspartate and the bridging
solvent molecule, the DFT calculations of structures consistent with
the crystal structure gave calculated values of J incompatible with the spectroscopic results. We conclude that the
crystal structure of the diferric state does not represent the frozen
solution structure and that a mono-μ-hydroxo diferrous species
is the catalytically functional state that reacts with NO and O2. The new EPR spectroscopic probe of the diferric state indicated
that the diferric structure of FDP prior to and immediately after
turnover with NO are flavin mononucleotide (FMN) dependent, implicating
an additional proton transfer role for FMN in turnover of NO.
History
Usage metrics
Categories
Keywords
nitric oxide reductivediferrous speciesN 2 O-μ-hydroxo diferrous speciesFDPproton transfer roledihydroxo bridged diferric coreFlavo-diiron Enzyme Implicate New Diiron Site Structures Flavo-diiron proteinsdiferric stateFMNO 2hydroxo bridgeEPR spectroscopic probediiron core structurecrystal structureDFT calculations