ja0530873_si_001.pdf (9.81 kB)
Download fileSpectroscopic and Kinetic Studies of Arabidopsis thaliana Sulfite Oxidase: Nature of the Redox-Active Orbital and Electronic Structure Contributions to Catalysis
journal contribution
posted on 2005-11-30, 00:00 authored by Craig Hemann, Brian L. Hood, Meita Fulton, Robert Hänsch, Günter Schwarz, Ralf R. Mendel, Martin L. Kirk, Russ HillePlant sulfite oxidase from Arabidopsis thaliana has been characterized both spectroscopically
and kinetically. The enzyme is unusual in lacking the heme domain that is present in the otherwise highly
homologous enzyme from vertebrate sources. In steady-state assays, the enzyme exhibits a pH maximum
of 8.5 and is also found to function as a selenite oxidase. Sulfite at the lowest experimentally feasible
concentrations reduces the enzyme within the dead-time of a stopped-flow instrument at 5 °C, indicating
that the A. thaliana enzyme has a limiting rate constant for reduction, kred, at least 10 times greater than
that of the chicken enzyme (190 s-1). The EPR parameters for the high- and low-pH forms of the A. thaliana
enzyme have been determined, and the g-values are found to resemble those previously reported for the
vertebrate enzymes. Finally, the A. thaliana enzyme has been probed by resonance Raman spectroscopy.
A detailed analysis of the vibrational spectrum in the region where MoO stretching modes are anticipated
to occur has been performed with the help of density functional theory calculations, evaluated in the context
of the Raman data. Calculated frequencies obtained for two model systems have been compared to
experimental resonance Raman spectra of oxidized A. thaliana sulfite oxidase catalytically cycled in both
H216O and H218O. The vibrational frequency shifts observed upon 18O-labeling of the enzyme are consistent
with theoretical models in which either the equatorial oxygen or both equatorial and axial atoms of the
dioxomolybdenum center are labeled. Importantly, the vibrational mode description is consistent with the
active site possessing geometrically inequivalent oxo ligands and a Mo dxy redox-active molecular orbital
oriented in the equatorial plane forming a π-bonding interaction solely with the equatorial oxo, Oeq. Electron
occupancy of this MoOeq π* redox orbital upon interaction with substrates would effectively labilize the
MoOeq bond, providing the dominant contribution to lowering the activation energy for oxygen atom transfer.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
EPRH 2 18 Othaliana sulfite oxidase catalyticallyresonance Raman spectraresonance Raman spectroscopyoxygen atom transferMoCatalysis Plant sulfite oxidasevibrational mode descriptionH 2 16 Othaliana enzymeElectronic Structure ContributionsArabidopsis t haliana Sulfite Oxidasevibrational frequency shiftsinequivalent oxo ligands