posted on 2015-12-16, 21:48authored byDiana
E. Schlamadinger, Yi Wang, J. Andrew McCammon, Judy E. Kim
Antimicrobial peptides (AMPs), such as cecropin A from
silk moth,
are key components of the innate immune system. They are effective
defensive weapons against invading pathogens, yet they do not target
host eukaryotic cells. In contrast, peptide toxins, such as honeybee
melittin, are nondiscriminating and target both eukaryotic and prokaryotic
cells. An AMP-toxin hybrid peptide that is composed of cecropin A
and melittin (CM15) improves upon the antimicrobial activity of cecropin
A without displaying the nonspecific, hemolytic properties of melittin.
Here we report fluorescence and UV resonance Raman spectra of melittin,
cecropin A, and CM15 with the goal of elucidating peptide-membrane
interactions that help guide specificity. We have probed the potency
for membrane disruption, local environment and structure of the single
tryptophan residue, backbone conformation near the peptide hinge,
and amide backbone structure of the peptides in lipid environments
that mimic eukaryotic and prokaryotic membranes. These experimental
results suggest that melittin inserts deeply into the bilayer, whereas
cecropin A remains localized to the lipid headgroup region. A surprising
finding is that CM15 is a potent membrane-disruptor despite its largely
unfolded conformation. A molecular dynamics analysis complements these
data and demonstrates the ability of CM15 to associate favorably with
membranes as an unfolded peptide. This combined experimental–computational
study suggests that new models for peptide–membrane interactions
should be considered.