la051423n_si_001.pdf (256.04 kB)
Download fileSpectroelectrochemical Investigation of a Flavoprotein with a Flavin-Modified Gold Electrode
journal contribution
posted on 2006-02-28, 00:00 authored by Gilbert Nöll, Erika Kozma, Rita Grandori, Jannette Carey, Thomas Schödl, Günter Hauska, Jörg DaubA flavin-modified gold electrode was developed in order to catalyze the electrochemical oxidoreduction of flavoproteins.
Surface modification was carried out by a two-step procedure. In the first step a mixed self-assembled monolayer
obtained by adsorption of activated and nonactivated 3,3‘-dithiopropionic acid (free acid and N-succinimidyl ester)
was formed, followed by the covalent attachment of a N(10)-hexylamino-alkylated flavin derivative via an amide bond
in the second step. The electrochemical properties of the flavin-modified electrode are presented and discussed. The
redox potential of the attached flavin was measured at various pH values and the electron-transfer rate constant between
electrode and flavin was determined as k0 = 5 s-1 independent of pH. The flavin-modified electrode was successfully
applied to the electrochemical and spectroelectrochemical investigation of the flavoprotein WrbA from Escherichia
coli that shows some structural similarities to flavodoxins. It is concluded that the electron transfer “electrode → flavin
→ flavoprotein” occurs by a two-step hopping mechanism where the first step is rate determining. Kinetic details are
discussed. Furthermore, it turned out that, in contrast to flavodoxins, where the semiquinone state is stabilized, WrbA
rapidly takes up two electrons, directly leading to the fully reduced form. The presented electrode surface modification
may generally lend itself for spectroelectrochemical investigations of flavoproteins.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
electrochemical oxidoreductioncovalent attachmentelectrochemical propertieselectrode surface modificationamide bondspectroelectrochemical investigationsSurface modificationsuccinimidyl esterk 0Kinetic detailssemiquinone stateEscherichia coliflavoprotein WrbAflavinpH valuesSpectroelectrochemical Investigationspectroelectrochemical investigation