cg5001057_si_001.pdf (3.42 MB)

Solvent Effect on the Supramolecular Patterns and Luminescent Properties of Organic Salts Comprising Naphthalene-1,5-disulfonic Acid and Triphenylmethylamine

Download (3.42 MB)
journal contribution
posted on 07.05.2014, 00:00 by Ya-Nan Li, Li-Hua Huo, Zhao-Peng Deng, Xin Zou, Zhi-Biao Zhu, Hui Zhao, Shan Gao
The solvent reaction of naphthalene-1,5-disulfonic acid and triphenylmethylamine gives rise to nine organic salts, namely, 2­(HTPMA)+­·(NDS)2–­·2­(MeOH) (1), 2­(HTPMA)+­·(NDS)2–­·6­(EtOH) (2), 2­(HTPMA)+­·(NDS)2–­·4­(n-PrOH) (3), 2­(HTPMA)+­·(NDS)2–­·4­(n-BuOH) (4), 2­(HTPMA)+­·(NDS)2–­·2­(n-PeOH) (5), 2­(HTPMA)+­·(NDS)2–­·3­(DO)­·2­(H2O) (6), 2­(HTPMA)+­·(NDS)2–­·4­(DMF) (7), 2­(HTPMA)+­·(NDS)2–­·4­(DMSO) (8), and 2­(HTPMA)+­·(NDS)2–­·4­(H2O) (9) (H2NDS = naphthalene-1,5-disulfonic acid, TPMA = triphenylmethylamine, DO = 1,4-dioxane), which have been characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, photoluminescence (PL), and powder and single-crystal X-ray diffraction (XRD). Structural analyses indicate that the nature of the solvent molecules can effectively influence the hydrogen bonding modes of the −SO3 and −NH3+ groups, which then result in diverse architectures. The HTPMA+ cations and NDS2– anions in salts 1, 3, and 4 are alternately arranged to form column motifs, which then pack with each other to form lamellar structures with a wide interlayer space. The NDS2– anions in salts 2 and 5 adopt standing and recumbent positions and act as pillars to extend adjacent double layers formed by HTPMA+ cations into pillared layered supramolecular networks. In comparison, pairs of HTPMA+ cations in salt 6 act as pillars and extend the layers formed by two kinds of NDS2– anions to generate pillared layered frameworks. Salts 7 and 8 exhibit a similar packing diagram, in which adjacent monolayers of HTPMA+ cations are pillared by the NDS2– anions in a recumbent position. Salt 9 is a porous hydrogen-bonding organic framework assembled from the alternate arrangement of HTPMA+ cations and NDS2– anions, and its products at 50 and 120 °C exhibit different structures after being immersed in aqueous solution with the composition of 2­(HTPMA)+­·(NDS)2–­·4­(H2O) (10) and 2­(HTPMA)+­·2­(TPMA)­·(NDS)2– (11). Luminescent investigation reveals that the emission maximum of salts 19 varies from 382 to 393 nm. Moreover, the detailed chemical behaviors for salt 9, such as thermal stability, temperature-dependent infrared spectroscopy, powder XRD, PL, are carefully studied.