nz6b00249_si_001.pdf (510.15 kB)

Solution-Processed Air-Stable Mesoscopic Selenium Solar Cells

Download (510.15 kB)
journal contribution
posted on 28.07.2016, 00:00 by Menghua Zhu, Feng Hao, Lin Ma, Tze-Bin Song, Claire E. Miller, Michael R. Wasielewski, Xin Li, Mercouri G. Kanatzidis
Crystalline selenium (c-Se) is a direct band gap semiconductor and has been developed for detector applications for more than 30 years. While most advances have been made using vacuum deposition processes, it remains a challenge to prepare efficient c-Se devices directly from solution. We demonstrate a simple solution process leading to uniform and high-crystallinity selenium films under ambient conditions. A combination of ethylenediamine (EDA) and hydrazine solvents was found to be effective in dissolving selenium powder and forming highly concentrated solutions. These can be used to infiltrate a mesoporous titanium dioxide layer and form a smooth and pinhole-free capping overlayer. Efficient light-induced charge injection from the crystalline selenium to TiO2 was observed using transient absorption spectroscopy. A small amount of EDA addition in the hydrazine solution was found to improve the film coverage significantly, and on the basis of the finding, we are able to achieve up to 3.52% power conversion efficiency solar cells with a fill factor of 57%. These results provide a method to control the crystalline selenium film and represent significant progress in developing low-cost selenium-based solar cells.