ma7b00860_si_001.pdf (2.04 MB)

Soft Poly(butyl acrylate) Side Chains toward Intrinsically Stretchable Polymeric Semiconductors for Field-Effect Transistor Applications

Download (2.04 MB)
journal contribution
posted on 23.06.2017, 14:48 by Han-Fang Wen, Hung-Chin Wu, Junko Aimi, Chih-Chien Hung, Yun-Chi Chiang, Chi-Ching Kuo, Wen-Chang Chen
Poly­(butyl acrylate) (PBA) side chain equipped isoindigo-bithiophene (II2T) conjugated polymers have been designed and synthesized for stretchable electronic applications. The PBA segment possesses low glass transition temperature and high softness, offering a great opportunity to improve the mechanical property of semiconducting polymer thin films that typically contain lots of rigid conjugated rings. Polymers with 0, 5, 10, 20 and 100% of PBA side chains, named PII2T, PII2T-PBA5, PII2T-PBA10, PII2T-PBA20, and PII2T-PBA100, were explored, and their polymer properties, surface morphology, electrical characteristics, and strain-dependent performance were investigated systematically. The series polymers showed a charge carrier mobility of 0.06–0.8 cm2 V–1 s–1 with an on/off current ratio over 105 dependent on different amounts of PBA chains as probed using a top-contact transistor device. Moreover, we can still achieve a mobility higher than 0.2 cm2 V–1 s–1 even if 10% of PBA side chains were added (i.e., PII2T-PBA10). Such PII2T-PBA polymers, more attractive, exhibited superior thin film ductility with a low tensile modulus down to 0.12 GPa (PII2T-PBA20) due to the soft PBA side chain. The more PBA segment was incroporated, the lower modulus was reached. The mobility performance, at the same time, remained approximately 0.08 cm2 V–1 s–1 based on PII2T-PBA10 films even under a 60% strain and could be simultaneously operated over 400 stretching/releasing cycles without significant electrical degradations. The above results suggest that the rational design of soft PBA side chains provides a great potential for next-generation soft and wearable electronic applications.