posted on 2019-04-30, 00:00authored byAchala
N. D. Punchi Hewage, Huili Yao, Baskar Nammalwar, Krishna Kumar Gnanasekaran, Scott Lovell, Richard A. Bunce, Kate Eshelman, Sahishna M. Phaniraj, Molly M. Lee, Blake R. Peterson, Kevin P. Battaile, Allen B. Reitz, Mario Rivera
The iron storage
protein bacterioferritin (BfrB) is central to
bacterial iron homeostasis. The mobilization of iron from BfrB, which
requires binding by a cognate ferredoxin (Bfd), is essential to the
regulation of cytosolic iron levels in P. aeruginosa. This paper describes the structure-guided development of small
molecule inhibitors of the BfrB–Bfd protein–protein
interaction. The process was initiated by screening a fragment library
and followed by obtaining the structure of a fragment hit bound to
BfrB. The structural insights were used to develop a series of 4-(benzylamino)-
and 4-((3-phenylpropyl)amino)-isoindoline-1,3-dione analogs that selectively
bind BfrB at the Bfd binding site. Challenging P. aeruginosa cells with the 4-substituted isoindoline analogs revealed a dose-dependent
growth phenotype. Further investigation determined that the analogs
elicit a pyoverdin hyperproduction phenotype that is consistent with
blockade of the BfrB–Bfd interaction and ensuing irreversible
accumulation of iron in BfrB, with concomitant depletion of iron in
the cytosol. The irreversible accumulation of iron in BfrB prompted
by the 4-substituted isoindoline analogs was confirmed by visualization
of BfrB-iron in P. aeruginosa cell lysates separated
on native PAGE gels and stained for iron with Ferene S. Challenging P. aeruginosa cultures with a combination of commercial
fluoroquinolone and our isoindoline analogs results in significantly
lower cell survival relative to treatment with either antibiotic or
analog alone. Collectively, these findings furnish proof of concept
for the usefulness of small molecule probes designed to dysregulate
bacterial iron homeostasis by targeting a protein–protein interaction
pivotal for iron storage in the bacterial cell.