nn6b07820_si_001.pdf (9.5 MB)
Download fileSize-Controlled Pd Nanoparticle Catalysts Prepared by Galvanic Displacement into a Porous Si-Iron Oxide Nanoparticle Host
journal contribution
posted on 2017-02-14, 00:00 authored by Taeho Kim, Xin Fu, David Warther, Michael J. SailorPorous
silicon nanoparticles containing both Pd and iron oxide
nanoparticles are prepared and studied as magnetically recoverable
catalysts for organic reductions. The Pd nanoparticles are generated in situ by electroless deposition of Pd(NH3)42+, where the porous Si skeleton acts as both a
template and as a reducing agent and the released ammonia ligands
raise the local pH to exert control over the size of the Pd nanoparticles.
The nanocomposites are characterized by transmission electron microscopy,
energy-dispersive X-ray spectroscopy, nitrogen adsorption, X-ray diffraction,
superconducting quantum interference device magnetization, and dynamic
light scattering. The nanocomposite consists of a porous Si nanoparticle
(150 nm mean diameter) containing ∼20 nm pores, uniformly decorated
with a high loading of surfactant-free Pd nanoparticles (12 nm mean
diameter) and superparamagnetic γ-Fe2O3 nanoparticles (∼7 nm mean diameter). The reduction of 4-nitrophenol
to 4-aminophenol by sodium borohydride is catalyzed by the nanocomposite,
which is stable through the course of the reaction. Catalytic reduction
of the organic dyes methylene blue and rhodamine B is also demonstrated.
The conversion efficiency and catalytic activity are found to be superior
to a commercial Pd/C catalyst compared under comparable reaction conditions.
The composite catalyst can be recovered from the reaction mixture
by applying an external magnetic field due to the existence of the
superparamagnetic iron oxide nanoparticles in the construct. The recovered particles retain their catalytic activity.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
energy-dispersive X-ray spectroscopysuperparamagnetic iron oxide nanoparticlesSi skeleton actsPd nanoparticlesdiameteriron oxide nanoparticlesPorous Si-Iron Oxide Nanoparticle Host Porous silicon nanoparticlesnanocompositecatalysttransmission electron microscopysuperconducting quantum interference device magnetizationSize-Controlled Pd Nanoparticle Catalystsnm