ac7b02654_si_001.pdf (1.48 MB)

Site-Specific Quantification of Protein Ubiquitination on MS2 Fragment Ion Level via Isobaric Peptide Labeling

Download (1.48 MB)
journal contribution
posted on 05.10.2017, 00:00 by Ting Cao, Lei Zhang, Ying Zhang, Guoquan Yan, Caiyun Fang, Huimin Bao, Haojie Lu
Proteome-wide quantitative analysis of protein ubiquitination is important to gain insight into its various cellular functions. However, it is still challenging to monitor how ubiquitination at each individual lysine residue is independently regulated, especially the whereabouts of peptides containing more than one ubiquitination site. In recent years, isobaric peptide termini labeling has been considered a promising strategy in quantitative proteomics, benefiting from its high accuracy by quantifying with a series of b, y fragment ion pairs. Herein, we extended the concept of isobaric peptide termini labeling to large-scale quantitative analysis of protein ubiquitination. A novel MS2 fragment ion based quantitative approach was developed, allowing the quantification of ubiquitination at site level via isobaric K-ε-GG peptide labeling, which combined metabolic labeling, K-ε-GG immunoaffinity enrichment, and site-selective N-terminus dimethylation. The feasibility of this proposed strategy was demonstrated through the ubiquitin proteome analysis of differently labeled MCF-7 cell digests. As a result, 2970 unique K-ε-GG peptides of 1383 proteins containing 2874 ubiquitinated sites were confidently quantified with high accuracy and sensitivity. In addition, we demonstrated that quantification on MS2 fragment ion level makes it possible to precisely quantify each individual ubiquitinated lysine residue in 39 K-ε-GG peptides bearing two ubiquitination sites by the use of specific ubiquitinated b, y ion pairs. It is expected that this proposed approach will serve as a powerful tool to quantify ubiquitination at the site level, especially for those multiubiquitinated peptides.

History

Exports