jp0491156_si_001.pdf (38.62 kB)
Singlet−Triplet Energy Gaps of Gas-Phase RNA and DNA Bases. A Quantum Chemical Study
journal contribution
posted on 2004-08-05, 00:00 authored by Minh Tho Nguyen, Rubo Zhang, Pham-Cam Nam, Arnout CeulemansElectronic structure calculations using both ab initio MO and DFT methods, in conjunction with the 6-311++G(d,p), 6-311++G(3df,2p), and aug-cc-pVTZ basis sets, have been applied to investigate the energies and
structures of the lowest-lying triplet states of the series of five parent nucleotide RNA and DNA bases including
uracil, thymine, cytosine, guanine, and adenine and the halogenated 5X and 6X-substituted uracils (X = F,
Cl, and Br). The singlet−triplet gap ΔEST of uracil was evaluated using different functionals (B3LYP, B3P86,
B3PW91, BP97-1, HCTH). MP2 and CCSD(T) methods were considered for uracil and thymine. For other
bases, only B3LYP computations were performed. Computed results agree relatively well with those derived
from recent electron impact study (Abouaf et al., Chem. Phys. Lett. 2003, 381, 486). For each base, the
vertical triplet state is calculated at 3.5−3.8 eV above the corresponding singlet ground state but about 1 eV
below the first excited singlet. Although geometrical relaxation of triplet structures involving out-of-plane
distortions of hydrogen atoms leads to a stabilization of 0.7−0.8 eV, the triplet state is of (π* ← π) character.
The ΔEST values are evaluated as follows (values in eV and referred to S0): uracil, 3.63 (vertical, exp, 3.65
± 0.05)/3.00 (adiabatic); thymine, 3.50 (exp, 3.60 ± 0.05)/2.85; cytosine, 3.60/3.09; guanine, 3.84/3.06; adenine,
3.71/3.09. For uracil, halogen substitution at C(5) tends to reduce the ΔEST value by up to 0.3 eV whereas
C(5) methylation and C(6) halogenation induce only small changes. A vibrational analysis pointed out that
the frequencies associated with the main normal modes such as CO and N−H stretching motions are only
slightly shifted upon excitation.