posted on 2022-06-29, 14:09authored byLeonardo Tensi, Alexander V. Yakimov, Caterina Trotta, Chiara Domestici, Jordan De Jesus Silva, Scott R. Docherty, Cristiano Zuccaccia, Christophe Copéret, Alceo Macchioni
The development of
an efficient heterogeneous catalyst for storing
H2 into CO2 and releasing it from the produced
formic acid, when needed, is a crucial target for overcoming some
intrinsic criticalities of green hydrogen exploitation, such as high
flammability, low density, and handling. Herein, we report an efficient
heterogeneous catalyst for both reactions prepared by immobilizing
a molecular iridium organometallic catalyst onto a high-surface mesoporous
silica, through a sol–gel methodology. The presence of tailored
single-metal catalytic sites, derived by a suitable choice of ligands
with desired steric and electronic characteristics, in combination
with optimized support features, makes the immobilized catalyst highly
active. Furthermore, the information derived from multinuclear DNP-enhanced
NMR spectroscopy, elemental analysis, and Ir L3-edge XAS
indicates the formation of cationic iridium sites. It is quite remarkable
to note that the immobilized catalyst shows essentially the same catalytic
activity as its molecular analogue in the hydrogenation of CO2. In the reverse reaction of HCOOH dehydrogenation, it is
approximately twice less active but has no induction period.