American Chemical Society
Browse
- No file added yet -

Single-Molecule Investigation of the Protein–Aptamer Interactions and Sensing Application Inside the Single Glass Nanopore

Download (1.94 MB)
journal contribution
posted on 2022-12-07, 21:05 authored by Mengya Cao, Lijun Zhang, Haoran Tang, Xia Qiu, Yongxin Li
Solid-state nanopores offer a nanoconfined space for a single-molecule sensing strategy. Evaluating the behavior of proteins and protein-related interactions at the single-molecule level is becoming more and more important for a better understanding of biological processes and diseases. In this work, the aptamer-functionalized nanopore was prepared as the sensing platform for kinetic analysis of the carcinoembryonic antigen (CEA) with its aptamers, which is an important cancer biomarker. CEA molecules were captured by the aptamers immobilized on the inner surface of the nanopore, and there was a complicated interaction between the CEA molecules and the aptamer, which is the process of association and dissociation. This could be used to measure the dynamics of aptamer–protein interactions without labeling. The kinetic analysis could be evaluated at the single-molecule level to interpret the dissociation constants of the binding and dissociation processes. Results showed that the translocation of CEA molecules in a functionalized nanopore had a deep blockades degree and long duration compared with nanopore modified with bare gold, which could be used for CEA sensing. This protein and protein-related interaction we designed provides new insights for evaluating the binding affinity, which will be beneficial for protein sensing and immunoassays.

History