am8b20143_si_001.pdf (441.1 kB)

Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems

Download (441.1 kB)
journal contribution
posted on 13.02.2019, 00:00 by Sungwoo Chun, Wonkyeong Son, Gwangyeob Lee, Shi Hyeong Kim, Jong Woo Park, Seon Jeong Kim, Changhyun Pang, Changsoon Choi
Applications in the field of portable and wearable electronics are becoming multifunctional, and the achievement of transparent electronics extensively expands the applications into devices such as wearable flexible displays or skin-attachable mobile computers. Moreover, the self-charging power system (SCPS) is the core technique for realizing portable and wearable electronics. Here, we propose a transparent and flexible multifunctional electronic system in which both an all-in-one SCPS and a touch sensor are combined. A single-layer graphene (SLG) film was adapted as an electrode for the supercapacitor, touch sensor, and a triboelectric nanogenerator (TENG), thus making an electronic system that is ultrathin, lightweight, transparent, and flexible. Capacitive-type transparent and flexible electronic devices can be simultaneously used as an electrochemical double-layer capacitance-based supercapacitor and as a sensitive, fast-responding touch sensor in a single-device architecture by inserting a separator of polyvinyl alcohol–lithium chloride-soaked polyacrylonitrile electrospun mat on polyethylene naphthalate between two symmetric SLG film electrodes. Furthermore, a transparent all-in-one SCPS was fabricated by laminating a TENG device with a supercapacitor, and high-performance electric power generation/storage capability is demonstrated.