American Chemical Society
Browse
nn1c09864_si_001.pdf (1.18 MB)

Serum Metabolic Fingerprints on Bowl-Shaped Submicroreactor Chip for Chemotherapy Monitoring

Download (1.18 MB)
journal contribution
posted on 2022-01-31, 19:37 authored by Xia Yin, Jing Yang, Mengji Zhang, Xinyao Wang, Wei Xu, Cameron-Alexander H. Price, Lin Huang, Wanshan Liu, Haiyang Su, Wenjing Wang, Hongyu Chen, Guangjin Hou, Mark Walker, Ying Zhou, Zhen Shen, Jian Liu, Kun Qian, Wen Di
Chemotherapy is a primary cancer treatment strategy, the monitoring of which is critical to enhancing the survival rate and quality of life of cancer patients. However, current chemotherapy monitoring mainly relies on imaging tools with inefficient sensitivity and radiation invasiveness. Herein, we develop the bowl-shaped submicroreactor chip of Au-loaded 3-aminophenol formaldehyde resin (denoted as APF-bowl&Au) with a specifically designed structure and Au loading content. The obtained APF-bowl&Au, used as the matrix of laser desorption/ionization mass spectrometry (LDI MS), possesses an enhanced localized electromagnetic field for strengthened small metabolite detection. The APF-bowl&Au enables the extraction of serum metabolic fingerprints (SMFs), and machine learning of the SMFs achieves chemotherapy monitoring of ovarian cancer with area-under-the-curve (AUC) of 0.81–0.98. Furthermore, a serum metabolic biomarker panel is preliminarily identified, exhibiting gradual changes as the chemotherapy cycles proceed. This work provides insights into the development of nanochips and contributes to a universal detection platform for chemotherapy monitoring.

History