ja6b00055_si_001.pdf (1.42 MB)
Download file

Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters

Download (1.42 MB)
journal contribution
posted on 2016-03-03, 00:00 authored by Xianfeng Zhang, Longfei Lv, Li Ji, Guannan Guo, Limin Liu, Dandan Han, Biwei Wang, Yaqi Tu, Jianhua Hu, Dong Yang, Angang Dong
Self-assembly of nanocrystal (NC) building blocks into mesoscopic superstructures with well-defined symmetry and geometry is essential for creating new materials with rationally designed properties. Despite the tremendous progress in colloidal assembly, it remains a fundamental challenge to assemble isotropic spherical NCs into one-dimensional (1D) ordered superstructures. Here, we report a new and general methodology that utilizes molecular clusters to induce the anisotropic assembly of NCs in solution, yielding polymer-like, single-NC-wide linear chains comprising as many as ∼1000 close-packed NCs. This cluster-assisted assembly process is applicable to various metallic, semiconductor, and magnetic NCs of different sizes and shapes. Mechanistic investigation reveals that the solvent-induced association of clusters plays a key role in driving the anisotropic assembly of NCs. Our work opens a solution-based route for linearly assembling NCs and represents an important step toward the bottom-up construction of 1D ordered NC superstructures.