American Chemical Society
ja0342648_si_001.pdf (413.3 kB)

Self-Assembly of an Environmentally Responsive Polymer/Silica Nanocomposite

Download (413.3 kB)
journal contribution
posted on 2003-04-22, 00:00 authored by Georg Garnweitner, Bernd Smarsly, Roger Assink, Wilhelm Ruland, Evelyn Bond, C. Jeffrey Brinker
Thermoresponsive nanocomposite thin films composed of alternating layers of silica and polymerized N-isopropylacrylamide (NIPAM) or NIPAM plus dodecyl methacrylate (DM) hydrogels were prepared by surfactant-directed evaporation-induced self-assembly (EISA). During EISA, the organic monomers partition within the hydrophobic domains of a lamellar mesophase. In-situ polymerization via a free radical process results in a 1−2 nm thick hydrogel phase sandwiched between layers of silica oriented parallel to the substrate surface. The thermoresponsiveness of PNIPAM is preserved in this confined environment, and the polymeric layers reversibly swell and deswell by a factor of 2 in water upon temperature changes around the transition temperature of PNIPAM (32 °C). The composition, mesostructure, and environmental response were studied by detailed NMR, TGA, and SAXS analyses.